
A 168 D . W . W O O D A R D A N D G . D . C O D Y 

where r 0 = (2SMF/kB)} S is the velocity of sound, and 
&F is the Fermi wave vector. If one used a velocity of 
sound of 3X105 cm/sec, To from the data corresponds 
to &F—2X107 cm-"1. The free-electron model of Nb3Sn, 
with the full valence of 4.75, would imply ^ F = S 2 X 1 0 8 

cm-1, while a one-dimensional lattice would imply 
&F—6X107 cm-1, in fair agreement. Unfortunately, (3) 
would also imply a linear term too large compared to 
the exponential to fit the experimental resistivity. 

Additional evidence for the source of the anomalous 
behavior of the resistivity of NbsSn is provided by Hall 
measurements made at 27, 78, and 300°K in fields up 
to 7600 G. The Hall voltage was positive, independent 
of temperature, and in terms of a one-carrier model, 
implied a hole density of 1.77X1022 holes/cc. The 
effective valence of NbaSn is thus 0.27 holes per atom, 
and the room temperature mobility is 4.3 cm2/Vsec. 
Although quantitative interpretation of this Hall 
constant is difficult since it undoubtedly arises from 
multiple band effects, the temperature independence is 
significant for the present paper. Since, from 300-2 7 °K, 
the resistivity changes by a factor of 6, the constant 
Hall voltage supports the view that the scattering time 
rather than the effective number of carriers is changing 

1. INTRODUCTION 

THE problem of nuclear magnetic relaxation via 
the dipole-dipole interaction in a crystal lattice 

is a many-body problem in which the correlations be­
tween spins at different sites play a role. At tempera­
tures sufficiently low, so that the lattice is effectively 
rigid, the system of spins is an isolated system with a 
discrete system of energy levels; the approach to equi­
librium of an initial polarization transverse to an applied 
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1 as the temperature is reduced, and would appear to rule 
E. out the Wilson-Mott model8-10 for NbsSn. 
> The present paper has shown the existence of a 
, pronounced resistivity anomaly in NbgSn, and demon-
J strated that the temperature variation can be fit to an 
r accuracy of 1% from 18-850°K, by a surprisingly simple 
> expression. Moreover, Hall measurements support the 
) view that the anomaly arises from an unexpected rapid 

temperature dependence of the scattering probability, 
3 below 200°K. Unfortunately, a more quantitative treat-
l ment requires a better knowledge of the band structure 
> and bonding in NbaSn than is presently available, in 
i particular, an analysis of the role played by the chains 
, of strongly bonded niobium atoms. It is hoped that such 
j a quantitative treatment of the structure of Nb3Sn and 
, its transport behavior may also lead to an understanding 

of the intriguing fact that this material has the highest 
[ Te of any known superconductor (18.3°K). 
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10 M. B. Brodsky, Phys. Rev. 131, 137 (1963). 

static magnetic field is in this case oscillatory, as both 
the experiments and the explicit calculations of Lowe 
and Norberg have shown.1 At high temperatures the 
dipole-dipole relaxation in solids is described by Bloch's 
general theory of relaxation,2 in which the lattice vibra­
tions play the role of a heat bath; the relaxation of an 
initial polarization transverse to the static magnetic 
field is in this case described by a sum of decaying ex­
ponentials. The occurrence of oscillations at low tem­
peratures and their disappearance at high temperatures3 

1 1 . Lowe and R. Norberg, Phys. Rev. 107, 46 (1957). 
2 F. Bloch, Phys. Rev. 105, 1206 (1957). 
3 Some discussion of this phenomenon is given by A. Sher and 

H. PrimakofT, Phys. Rev. 119, 178 (1960). 
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A detailed investigation is made of the approach to equilibrium of system of spins with 7=1 /2 . The spin-
spin interaction S& 2j<k BjipJaJ* with Bjk constant is treated exactly, while the additional interaction 
SA 2y<& Ljk(rxJ<rx

k with Ljk depending on lattice vibrations is treated by means of the assumption of suf­
ficiently short correlation times for the Ljk operators. All correlations between the Ljk are included. The 
effect of the correlations usually neglected is expressed in terms of a sum over states somewhat resembling 
an Ising-model partition function with the time replacing interaction strength. The oscillatory relaxation 
via the Bjk and the monotonic relaxation via the phonons compete with each other; interference effects 
between the two relaxation modes also occur; the origin and nature of the irreversibility are very different 
for the two relaxation modes. 
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provided the stimulus for the present study. The oscil­
latory approach to equilibrium of other isolated systems 
with a discrete set of frequencies has been studied4 

particularly by Mazur, Montroll, Hemmer, Van Hove, 
Prigogine, and Bingen. The more general relation of 
master equations to the occurrence of oscillation in the 
approach to equilibrium has been discussed by Zwanzig,5 

by Van Hove and Verboven,6 and by Willis.7 

Solution of the Bloch equations for the magnetic 
relaxation of identical spin-| particles coupled by dipole-
dipole interaction gives a single relaxation time (T2) 
for the transverse relaxation. It has been particularly 
clearly pointed out by Hubbard8 that to obtain these 
solutions, correlations between the interactions of one 
pair of spins (i,j) and adjacent pairs (j,k) have to be 
neglected. Consequently,9 the solutions are not really 
applicable to solids. 

The aim of the present paper is to study the extension 
of the theory by including all correlations between spins 
as well as the low-temperature oscillations for a rather 
simple model Hamiltonian for which the time-dependent 
density matrix can be evaluated completely by ele­
mentary methods. The Hamiltonian used is obtained 
by generalizing the Lowe-Norberg Hamiltonian to in­
clude spin-lattice interactions. The interaction Hamil­
tonian in this model commutes with the Zeeman term, 
so that only transverse relaxation can be studied; the 
logitudinal relaxation requires an exchange of energy 
between the Zeeman term and the lattice. It has been 
shown by Lowe and Norberg that in the rigid-lattice 
case the Hamiltonian used leads to qualitatively correct 
results. The features we have studied include: (A) the 
manner in which the correlations mentioned by Hub­
bard modify the transverse relaxation; (B) interfer­
ence and competition of relaxation involving short 
correlation times with that involving long correlation 
times; (C) the nature of irreversibility in the two cases. 

As is usual in the application of Bloch theory, we 
split the total Hamiltonian into a Hamiltonian for the 
spin system (3CS), one for the lattice (3CL) and spin-
lattice coupling (G): 

3C=3C8+3CL+G. (1) 

All energies and Hamiltonians will in the following be 
expressed in units of ft. For 3CS take the Lowe-Norberg 

4 The work on systems with discrete levels, particularly on 
assemblies of harmonic oscillators, is reviewed by E. Montroll in 
Lectures Theoret. Phys. 3, 221 (1960). Full references are given 
there. 

5 R. Zwanzig, Lectures Theoret. Phys. 3, 106 (1960). 
6 L. Van Hove and E. Verboven, Physica 27, 418 (1961). 
7 C. R. Willis, Phys. Rev. 127, 1405 (1962). 
8 P. Hubbard, Rev. Mod. Phys. 33, 249 (1961). 
9 A. Yoshimori and J. Korringa, Phys. Rev. 128, 1059, 1061 

(1962) have applied other methods (Green functions, stochastic 
variables in Hamiltonian) to study relaxation of a pair of dipoles; 
they obtain some features not contained in the usual solutions of 
the Bloch equation. 

model 

3C* = £ E Bjk*J<rx
k-~yH £ a J, (2) 

3 <k 3 

where Bjk are constants characterizing the rigid-lattice 
interaction, and the <JJ are Pauli spin matrices. The 
sum is over all pairs of spins in the crystal. This form 
of 3C« restricts consideration to spin-§ nuclei; it is, in 
fact, the Ising-model Hamiltonian with arbitrary range 
and strength of interaction. This Hamiltonian by itself 
gives rise to an oscillatory approach to equilibrium, 
arising from the superposition of the discrete set of 
frequencies of the spin system. We include the Zeeman 
term —HyJ^^x1 in the spin Hamiltonian, although such 
a term has little effect on the transverse relaxation, 
other than superimposing a Larmor precession on the 
spin motion. The lattice Hamiltonian 3CL depends only 
on lattice Variables; at this point its explicit form is not 
needed. 

The interaction term G is given by 

^ = 1 1 1 LjkorJax
k, Ljj=0, (3) 

3 * • 

where Ljk=Lkj are operators depending on lattice 
variables. We require that the average of L3-k over an 
equilibrium distribution of lattice coordinates vanishes. 
This involves no loss of generality,7 as the Bjk can always 
be redefined in accordance with this requirement. 
Physically, one may think of the Bjk and Ljk in terms 
of an expansion of the lattice vibrations about their 
equilibrium position, the BJk being a function only of 
the equilibrium positions, and the Ljk depending on 
deviations from equilibrium. We treat 5CS exactly, but 
in studying the time evolution due to G, we assume 
correlation times for the Ljk, which are short compared 
to relaxation times. The correlation times of the Bjk 

are, of course, infinite. 

2. RELAXATION FOR NONRIGID LATTICE 

The time evolution of the expectation of a spin 
operator 6 can be given in terms of the time-dependent 
density matrix p(t) of the total system: 

(0>*=Tr<5'L>0p(O; p(t) = txp(-im)p(0) exp(#C0. (4) 

Here the (S,L) means the trace is to be over the states 
of the lattice as well as those of the spin system. Carry­
ing out the trace over the lattice, noting that the com­
mutators [3CS,GQ and pC«,3C J vanish, one obtains 

<0>i=Tr<'>0P.(O, (5) 
with 
ps (/) = exp(—i3Cst)p8'(t) exp(i3Cst), 
p / (0«Tr<« expC- f^+Oe^XO) 

Xexpp(G+5C^)/]. (5a) 

In the case of the rigid lattice, G=0, and conse­
quently ps'(t) = p(Q). For the nonrigid lattice8 Bloch's 
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theory gives the following differential equation for pj (t): 

(dPM'/dt)+iLN,p/(t)l 

= 2XKkl(())[£V',p.'(inv>l, (6) 
Ik 

with N=Y^htiV
kVlAki, where the summation indices 

k and / each represent a pair of spins (q,q') and (p,pf), 
respectively, and Vk=<Tx

Q<rz
9'} 

f00 dai 
Akl= — { * * , ( - « ) - # * « ( « ) } . 

Jo co 

The spectral density function is 

1 r00 

Kki((a) = - (Lq,qf(r)Lp>p>)^rdr. (7) 

The Lq,q' are defined by (3), and the correlation func­
tions are explicitly (with fi=h/kT) 

(Lq,q>(T)LPtP>)p 

= Tr[exp(—JSJCL) exp(i3Q,LT)Lqiq> exp (—i^Lr ) !^* / ] / 

Trexp(- /3JCL) . (8) 

The spectral density satisfies the symmetry relation 

Kik(-a) = <rp°Kki(a). (9) 

The assumptions required in deriving (6) are given 
carefully by Hubbard.8 They are: (i) that the lattice 
behaves like a heat bath, remaining in thermal equi­
librium at a constant temperature while the spin system 
relaxes; (ii) that the correlation time of the lattice 
rc < s l / | iV | , 1 / | J R [ , where R is the right-hand side of 
Eq. (6). The correlation time is defined as the re­
ciprocal of a frequency co*, such that the spectral density 
functions change negligibly with any frequency change 
much less than <a*. Consequently, 

(Lq,qf(r)Lp>pf)^0} for | r | » r c . (10) 

The formal solution of (6) can be obtained by 
introducing an ordering parameter10 0. Operators to 
the right-hand side of 6 operate to the right of p / and 
operators on the left of 6 operate on the left of p / . Then 
the solution to (6) in operator form is 

Psf(t) = exp{itZ$7N2 

+2t E i ^ ( 0 ) [ [ n € , ^ ] } p s ( 0 ) . (11) 
Ik 

To carry it further, introduce the representation in 
which all the ax

3' are simultaneously diagonal, each 
having two eigenvalues wy=dbl. The solution to (6) 
becomes in this representation 

{m | p / (0 \n)-={m\ p,(0) | w ^ ' W r - ^ ' , (12) 

where (m\ stands for {mintr • •*»#(, etc. We write in 
10 U. Fano, Phys. Rev. 96, 869 (1954). 

more explicit notation Kq,q>iPtP' for Kki, where, how­
ever, Kq,qip,p> = Kq,q>iPtPzB0, and the order of subscript 
q, q', as well as that of p, p' is irrelevant. Then, with 
use of (9), 

X™«= E E Kq,q>)p,p>(fy(mqmq' — nqnq>) 
q,qf p,pf 

X(mpinp> — npnp>), (13) 

Hmn^lL H Aq,q>.PtP>{mqMq>mpMp> — nqnq>npnp>). (14) 
q,q' P,P' 

I t follows from the Definitions (7) and (8) that Xmw. 
and Hmn are both real quantities. That Xmn cannot be 
negative follows from the observation that the trace 
Tr pj{t)— 1 is a constant of the motion according to the 
Bloch equation: Remembering that p / is Hermitian 
with 0<(n\ps'\n)<l, it is clear that 

T r p . , a - E m i n | < n | p / | f » > | a < l ; 

consequently, no element of the density matrix can 
have a magnitude larger than unity, as would occur if 
^mn were negative. The property X m n >0 can also be 
proved directly from the general properties of the 
correlation functions. 

From (14) it is seen X n n = ^ n n = 0 ; therefore 

(n\ps'(t)\n)={n\ps(0)\n), 

reflecting the fact that all the a J are constants of the 
motion. I t may occur that some of the off-diagonal 
elements of matrix \mn vanish for particular values of 
the Kki(0) functions. If such Xm n=0 for m^n, it implies 
that (m\p8'\n) does not decay, and it suggests that 
some other physical constant of the motion may exist, 
which prevents the density matrix from reaching the 
final distribution l im^^(w |p / ( / ) | » )=(w |p 8 (0 ) |w)5 w w . 

Let us transform to the laboratory frame for the 
case that the spin-spin coupling involves only short 
correlation times, so that Bjk—Q in (2). From (5a) and 
(12) one has then 

(m | ps(t) \n)=(m\ p,(0) | n)e~iumnte~^mnt (15) 
with 

JV 

Umn^jH E (nj—tnd+Umn • ( 16 ) 

In the solutions which have been given8-11 in the 
literature for the case of dipole-dipole relaxation, the 
quantity N in (6) is neglected. This neglect is usually 
justified by the statement that the term will give rise 
to only very small modifications of the Larmor preces­
sion, if the external field is sufficiently strong. From 
(16) the usual assumption as applied to the present 
example is |/Xmn|<K|wm»— x̂mn] for m5* n. An alternative 
assumption that justifies the neglect of the p w n is 
\l*mn\«Xnn for m^H, In the dipole-dipole solutions in 
the literature, it also has been assumed8 that Kki(o>) 

11 R. Kubo and K. Tomita, J. Phys. Soc. (Japan) 9, 888 (1954). 
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= 8kiKii(<a). If this assumption is made, it is evident 
from (14) that Mmn = 0, and can be disregarded without 
the further assumption that Hmn is small. As an applica­
tion of (15) we calculate the transverse relaxation of a 
single spin component 2V*=JoV*. If the sample is re­
garded as infinite and no initial correlations exist be­
tween spins, all spins are equivalent in a simple lattice 
structure, so that the total spin is 

with 

</,),= (N/2)Tr<rz«ps(t). 

•wijW2' * *—Ma.'' *wi^;miwt2* • *wio* * '^N 

(17) 

vanish 

(m\p(0)\n) = 

Terms in the sum for X. 
unless one of each pair (q7q

f) and (p,pf) is the same as a. 
With this observation, (15) leads to 

Tro-z
a
Ps(t) = —i E mae

2im^Ht 

m 

X(ntim2 ma- • • \p(0)\mv • -ma* • •) . (18) 

A particular initial density matrix of physical interest 
is that for an ensemble with a given average polariza­
tion in the z direction, 

(HexP(aEi°vOI^) 
Trexp(aXyoy) 

1 N 
= — I I (wy|l+oV'tanria|%), (19) 

where a is a constant, corresponding to fiyHz, if the 
sample had come to thermal equilibrium in an effective 
field Hz prior to time /=0. The matrix elements of p(0) 
required in (18) are equal to ima2~N tanha, so that 
after summing over ma, (18) becomes 

((Tz
a)t= 2~N+1 tsaiha cos(2yHt) 

X E ' exp(~ 16 E E Kqapa(0)mqmpt). (20) 
m q p 

The prime again denotes the sum is not over ma. 
The sum over states occurring in (20) is quite similar 

to the partition function of the Ising model. It is beyond 
the scope of the present investigation to attempt to 
evaluate this sum in general; possibly some of the 
methods which have been successful12 in treating the 
Ising model may also be applied here. A very special 
case is one in which all the Ki0)

qaiPa are equal. Those 
terms corresponding to the absence of long-range order 
C(V^)Ey-iJvwy=0]], give no relaxation. Evidently 
then, this very special assumption about the K(0)

qa,pa 

introduces constraints into the system, which prevent 
(<rz

a) from decaying to zero. 
If the diagonal coefficients Kpa,pa(0) in the sums in 

(20) are factored out, one has 

(<rz«)t= 2~N+l tanha cos^yE^ T*Z(t), (21) 

l/T2^16Y,Kqaqa(0)y (22) 

Z ( f l s £ ' e x p ( - 1 6 E E Kqapa(0)mqmpt). (23) 
m q^P 

In the aforementioned usual approximation, Kqapa 

^SqpKqaga, the quantity Z(t) = 2N-1 and (crz
a)t relaxes 

with the single relaxation time 7V 
Equations (20) or (21) depend on the properties of 

the lattice only through the K(0)
qa>pa functions. The 

form of these functions can be obtained in a straight­
forward way. If, in particular, the Lqq> are expanded in 
terms of the displacement of nuclei from their equi­
librium position, and these displacements are, in turn, 
expressed in terms of phonon creation and annihilation 
operators, one obtains in the harmonic approximation 

e0uk 

K^qqf,pp^Y.Bkk^Bkk^' 
* (e*"*-l)2 

+ HH AkiBkl««'Bkl™ 
/3—e~^k\2 

\e^k-l J ' 
(24) 

where (k,l) designate phonon states. AH equals one, 
when cd&=cdj and is zero otherwise. The Bki

g'9' are con­
stants independent of temperature, but determined by 
the lattice structure. At very low temperatures (fi —>oo), 
theK0 ,(0) evidently vanish; while at high temper­
atures they become large. The temperature dependence 
is a function of the number of phonons present, which is 
small at low temperature and large at high temperature. 

3. RELAXATION OF THE ISOLATED SPIN SYSTEM 

In the preceding section an irreversible relaxation 
process is described, in which the z component of mag­
netic moment of the spin system decays from its initial 
value to its thermal equilibrium value, namely, zero. 
The irreversibility has its origin in the coupling with 
the lattice vibrations, which are described at all times 
by a thermal equilibrium distribution. The continual 
averaging over the lattice coordinates introduces a loss 
of information and the associated irreversibility. 

In describing the origin of the irreversibility for the 
rigid-lattice case, consider first quite generally an 
energetically isolated system with discrete energy levels 
En. From (4), the behavior of density matrix p8 and the 
expectation of a dynamical variable 6 are given by 

12 See G. Horwitz and H. Callen, Phys. Rev. 124, 1757 (1961), 
for a recent evaluation of the generalized Ising partition function. 

(m\p{t) | n)==e-ivmnt(m\p8(0) \ n), vmn=Em—En; 

(0ODHE A(n,m)e-ivmnt= A(o))e~io>tdo3; 
nm J 

A (tij m) s= (n 16 \ m){m \ p (0) | n), 

A.(«) ̂ E A (n,m)d(u— vmn).. 

(25) 

(26) 
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In sharp contrast to Eq. (15), the relation (25) 
shows that the elements of the density matrix for the 
isolated system are either constants or vary periodically 
with time. They do not approach an asymptotic value, 
although their time average value, bEm-En{m\p{0)\n) 
indicates a steady state about which the system oscil­
lates. The expectation value (d)t is a particular linear 
combination of oscillatory terms. Since p and 6 are 
Hermitian, A(m)n) — A^(n}m), or 4̂(co) = ̂ 4*(—co). 

To study how (26) may describe irreversibility, con­
sider in particular an initial configuration with the 
property 

A (myn) = A (n,m) > 0 

so that (26) becomes 

(0)t=mi A (mn) cosvmJ. 

(27) 

(28) 

Note from (28) that (0)*=(0)_*. In most experiments 
the system is not isolated for /<0 and therefore not 
described by (28), for t<0. The general behavior de­
scribed by (28) is as follows: At /=0, the {6)t has its 
maximum value. Destructive interference reduces {d)t 
so that after some characteristic coherence time tc the 
time-average value 

((0>«)av=Z) L A{m1n)bEm-En 

will have been reached. If the total number of levels of 
the system is finite, then the expression (28) is a finite 
sum of periodic terms, and the quantity {6)t is periodic 
or almost periodic with a finite period, or recurrence 
time 2re0. If the energy spectrum of the system is 
continuous, and A(co) = A(—o>), the recurrence time is 
generally not finite. But an oscillatory approach to 
equilibrium is perfectly possible. For example a rec­
tangular spectrum A(co) of width 2wo gives a smooot/t 
behavior for {6)t. 

One observes an apparently irreversible process in 
the laboratory, if the duration of the experiments is of 
the order of /c, but many orders of magnitude less than 
the recurrence time. The quantities trec and tc refer to 
a specific initial density matrix p(0) and to a particular 
dynamical variable 0. This may be contrasted to the 
situation with spin-lattice interaction. All the relaxa­
tion times of the system are in that case already con­
tained in the time dependence of the density matrix 
(15), although the relaxation of a particular dynamical 
variable with a particular initial density matrix may 
involve only some of these times. The recurrence time 
is infinite in the spin-lattice case, as is evident from (15). 
The recurrence time for Eq. (28) has been studied in 
general by Kac, Slater, Montroll, and others.4 

We investigate here only some physical features on 
which the presence of irreversibility depends for the 
particular example of the Hamiltonian (2), with mag­

netic field H~0. From the eigenvalues of (2), 

vmn^i L L Bjkimjtnk—njnk), Bkj**Bjk. (29) 

FoT6=(Te
a, (26) is 

(o"*a)*= —i £ Ma exp(—2itma ]£ Bkamk) 
m k 

X(mim2' • -ma' • • mN\ps(0)|wi ma- • -mN). 

(30) 

With the initial state (19), the 

tanha # 
A (mn)= I f ' Smjnfima-na (31) 

satisfy (27). The prime indicates exclude j=a. 
The sum in (30) is readily carried out1 to give with 

(31) 

{<Tza) t—tanha I I ' cosBajt. (32) 

If Bo is the largest of the Baj, then tc~Tr/2B0. Ex­
plicit evaluation of the behavior of {<Jz

a)t for the fluorine 
spin of a CaF2 crystal according to Lowe and Norberg 
shows that (32) corresponds to an oscillatory decay of 
the initial polarization in a time of the order of 10~5 sec, 
and ttQ^>tc, The recurrence time depends strongly on 
the distribution of values BR*, and in particular13 on 
whether or not different values are commensurate. For 
a model considering nearest-neighbor interaction only 
(Bja=Bo or 0), behavior is purely periodic with fre­
quency Bo. The opposite extreme occurs if the distribu­
tion of the Bja is well approximated by a continuous 
Gaussian distribution, leading to an exponential decay 
to equilibrium without oscillations. 

The particular initial density matrix (19) is one which 
also emphasizes the relaxation phenomenon because as 
we see from (30) and (31), it has the effect of giving 
each of the different frequencies exactly equal ampli­
tudes. The density matrix (19) is a direct product of 
single-spin density matrices, in which all spin-spin cor­
relations are neglected. The measured initial polariza­
tion does not require this. For example, one can suppose 
that the spin system is polarized initially in the z 
direction, in such a highly correlated way that all the 
matrix elements 

{mitnr • "ma' • 'tntf\p8(0)\nii ma- • -WJV) 

vanish, except those for one particular value of all the 
mi other than ma. Let these nonvanishing elements of 
ps(0) be equal to (i/2)ma tanha. It follows from (30) 
that the initial polarization is again tanha and (27) is 
satisfied; but instead of (32) one obtains a simple 

13 See E. Montroll, Ref. 4. 
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oscillation: 
(<r*a)i= tanha cos (2/ £ Bakfj,k) , (33) 

where the /z^ are the above-mentioned particular values 
(±1) of ma- In this example the initial density matrix 
gives one frequency a large amplitude, and the others a 
zero amplitude, thus preventing all relaxation effects. 

Next we with to show the relation of t̂he relaxation 
considered to the relaxation function employed in 
general theory of linear irreversible processes developed 
by Kubo.14 Consider the relaxation linear in Hz. From 
(30) and (31) 

< ^ > < = ? E < ^ > < = # ^ L N W , 

* L N ( 0 = (0yN/2™) E ' cos(2/ £ ' Bkamk). 
m k 

(34) 

The Lowe-Norberg function <£LN(0 is based on the un­
corrected initial density matrix (19). However, Kubo's 
theory applies to an initial equilibrium density matrix, 
including correlations 

p(0) = exp(-/33Cs)/Tr exp(-03Cs) (35) 

with 3C« given by (2). The linear relaxation with initial 
density matrix (35) is found to be 

<j>(t) = {N/2) £ ' A (m) cos(2/ £ ' Bkamk) 

A(m)-

y exp(—££»') sinh(0 E Bakmh) 
k 

E exp(-j(?£&') £ Bakmk 

(36) 

£&K 
exp(-/3£m') 

Eexp(-/3E fc0 
k 

Em'^h E ' E ' Bjkmjmk. 
&k 

esses depend. The needed convergence factor is ob­
tained, if one takes into account the fact that the 
interaction via the phonons is finite, however small. 
Treating that interaction in the usual approximation 
leads to 

• 0(f) = e-1^ E ' A (m) cos(2/ £ ' Bkamk). 

4. RELAXATION IN THE PRESENCE OF SHORT 
AND VERY LONG CORRELATION TIMES 

Having looked at the separate solutions for relaxation 
of the spin system in contact with a reservoir with short 
correlation times, and that for the spin system in con­
tact only with coordinates having very long relaxation 
times, we study next the solution for the case where the 
two types of relaxation processes compete. The general 
solution for the density matrix follows from (5a), (15), 
and (25): 

{m\ps(t)\n)=e~i^mn+Vmn)te~^mnt{m\p8(0)n). (37) 

For further discussion it will be convenient to put 
wmn=0, thus taking out the Larmor precession, which 
is irrelevant to the free relaxation, and neglecting the 
second-order perturbation corrections nmn to the domi­
nant frequencies vmn- It is convenient to regard Z(t), 
the quantity already introduced in Eq. (23), as an 
ordinary partition function. Then for any function 
A (m) of the m3; the corresponding expectation value is 
indicated by braces: 

{A}t^Z' A (m) exp(-16 Z E Kpaqa(0)mqmpt)/Z(t). 
m q^p 

(38) 

For the initial density matrix (19) one then finds 

<<r,«>,= (tanha/2Ar-1)^"</T2^W{cos(/E,^y«^i)}e, (39a) 

where T% is defined by (22). An alternative form is 

(<r.°)t= (tanha/2Ar~1)^-</r2Z(0 RetfT e*"****} t, (39b) 

where Re means "the real part of." If in (39b) one 
writes eimiBiat= cosBjJ+inij smBjJ, and carries out the 
indicated product, one obtains the series 

The prime again means exclude a or ma in the sums. 
The expression (36) for the Kubo relaxation function 
<t>(t) may be periodic or quasiperiodic and therefore not 
satisfy the condition lim«_>oo0(/) = O, on which many of 
the relations of the Kubo theory of irreversible proc-

tanha N-I N-I 
(<rz«)t= e-tl^ZWtU c o s ^ - E E * - 1 * ™ ^ } * I I s&nBJ I I cosBkt 

2N~l k s O - 2 l=s,r k^s,r 

+i:i:Zi: N-l{mpmqmrm8} t I I sinJW n cosBfc* + (i)N~l{ f[nii}t U sinflif|. (39c) 
P<g<r<«=4 l^P,Q,r,j k?*p,q,r,8 1=1 I 

The form of the last term is taken with N an odd understood that in all the sums and products the 
number for the sake of being definite. In (39c) it is particular spin a is excluded; also the simplified nota-

tion Bk^Bka is used. The quantities Z(t){ • • • }t occur-
14 R. Kubo, J. Phys. Soc. (Japan) 12, 570 (1957). ring in (39c) can be expressed in terms of the deriva-
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tives of the partition function. Let r » s — 1 6 ^ ^ ( 0 ) , 
then 

Z(t){fn9mrh**dZ/dT„, 

Z(t){mpmqmrma}t
:=d2Z/dTpqdTr8) etc. 

Just as in (21), the completely explicit calculation 
hinges on evaluating the partition function (38). 

From Eqs. (39a)-(39c) the following is noted: (i) I t 
is evident from (39a) that the earlier solution (21) with 
H=0 provides at all times an upper limit to the po­
larization (<Tz

a). Evidently, the rigid-lattice interaction 
can hasten, but not retard, the approach to equilibrium. 
(ii) The first term in the £ • • • ] in (39c) gives just the 
product of the short correlation time solution (21) with 
the long correlation time solution (32). All the other 
terms vanish unless there are pairs of spins (s,r) for 
which B8a^0j Bra^0, and simultaneously i£m ( 5 a

( 0 )7^0. 
They may thus be interpreted as interference terms 
between the two types of relaxation processes occurring 
simultaneously.15 

The higher order terms of the form, e.g., 

{mpmqmrmsmumv} t YL sinBiJ 
l~p, q,r,s,u,v 

will contribute only if the nucleus a interacts directly 
with each of the nuclei (p,q,r,s,Ujv), and each of mi in 
the { } is connected with at least one of the other my 
in the { } via a nonvanishing Kiaja(0). Otherwise the 
term will contain a factor {mi)t which equals zero. If a 
nucleus in a solid or very large molecule is within range 
of the direct interaction of only very few other magnetic 
nuclei, the series in (39c) breaks off after a few terms. 
(iii) The initial state used in (39) is such that at £ = 0 
all the interference terms vanish; both the smBkt 
factors, as well as the {• • •} coefficients vanish. 

Which of the two competing relaxation processes 
described in (37) to (39) will predominate depends on 
the numerical magnitude of the Bja and the Kqa,pa(0). 
Of course, the limiting case KqatPa (0)—> 0 corresponds 
to the Lowe-Norberg oscillatory solution, and the 
opposite limit Bja —> 0 gives the exponentially decaying 
solution. Generally, the condition that the solution 
show no oscillations is a complicated one; but for the 
case Kqa>pa(Qi) = dpqKqatqa (0), no oscillations can occur if 

£ 0 r 2 « l . (40) 

Here B0 is the largest of all the Bja. Equation (40) 
states that the solution is strongly damped before 
oscillations have begun. A sufficient, but probably too 
stringent, condition in the general case is that 

B0«ST £ £ Kpaqa(0)mpmq (41) 
q P 

for all mp and mq. 

"Another interference effect between relaxation via two 
mechanisms has been noted by Yoshimori and Korringa, Ref. 9. 

If the opposite conditions from (40) or (41) are 
satisfied (with ^> instead of « ) , the behavior of (<rs

a)t 

is predominantly determined by the rigid-lattice solu­
tion, except for very long times. 

5. REMARKS 

We have shown that the transverse relaxation of an 
Ising (or truncated dipolar) spin system with lattice 
interaction can be solved by elementary means, pro­
vided it is possible to divide the coefficients of the 
interaction into those that are practically constant, and 
those having correlation times short compared to re­
laxation times. The result is not completely simplified, 
but involves a sum over states formally very similar to 
the sum over states in the corresponding thermal equi­
librium problem. The particular simplifying feature in 
treating transverse relaxation is that the Zeeman 
energy of the system is a constant of the motion. In a 
corresponding treatment of longitudinal relaxation,16 

and the interesting case of time dependence through a 
phase transition, this simplifying feature would have to 
be abandoned. However, the other simplifying feature, 
the possibility of separating correlation times into short 
ones and long ones, is a feature applicable to many 
physical relaxation problems. This separation is a useful 
one, because the mathematical methods suited to 
treating the two regimes are very different. 

The present model yields a simple picture of the origin 
of oscillations in the approach to equilibrium: The 
subsystem involving long correlation times evolves in 
an oscillatory way; the dissipative effect of the sub­
system with short correlation times acts too slowly to 
damp out the oscillations before several maxima and 
minima have occurred. This picture does not seem to 
depend on the particular mode], except, again, the re­
quirement that the "lattice" may be divided into one 
subsystem with short correlation times, and another 
with only long correlation times. 
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